
Copyright is held by the author / owner(s). 
SIGGRAPH 2010, Los Angeles, California, July 25 – 29, 2010. 
ISBN 978-1-4503-0210-4/10/0007 

TapShot: Screenshot Snippets as GUI Shortcuts

Kristian Gohlke∗, Michael Hlatky
Hochschule Bremen (University of Applied Sciences)

Jörn Loviscach†

Fachhochschule Bielefeld (University of Applied Sciences)

1 Introduction

During extended sessions with a graphical user interface (GUI),
users often apply a small set of commands with high frequency. A
majority of direct manipulation tasks on a GUI are carried out using
the mouse, particularly when keyboard shortcuts are not provided
or the user is not familiar with them. Thus, to invoke a certain com-
mand, the user is required to aim the mouse pointer at a given on-
screen widget and click with the mouse. If the overall task requires
a user to click on the same widget repeatedly as part of a sequence
of different interleaved micro-tasks, the overall performance suf-
fers, as each point-and-click action requires a considerable amount
of time for correctly aiming at the respective control.

This work demonstrates a system that enables quick and transpar-
ent access of frequently used functionality in virtually any GUI-
enabled legacy application. For this purpose, we employ the
capabilities of readily available touch-sensitive devices—such as
the iPhone or similar multitouch controllers—to replace repetitive
point-and-click mouse interactions. The use of mouse interaction
still prevails for precise direct manipulation and for triggering more
rarely used commands on a GUI. Carrying over the idea of us-
ing GUI screenshots for scripting automated actions [Yeh et al.
2009], we use small screenshots as pushbuttons on the touch de-
vice. Controlling software via dynamically labelled keys is also in
the spirit of the steeply priced Optimus Maximum computer key-
board (http://www.artlebedev.com/everything/optimus/).

2 System Design

The TapShot system allows quickly assigning functionality from a
GUI to a touch screen device through custom visual shortcuts. Each
shortcut is represented by a small icon on the touch screen. Initially,
each icon’s place is blank. When the user interacts with any applica-
tion through the mouse on the main computer display, shortcuts can
be created. This is achieved by pressing any of the icons while si-
multaneously holding down an additional ’snip’ button on the touch
display. This invokes a learn mode, which is further indicated by an
icon-sized translucent square underneath the mouse pointer on the
main screen. The size of the square can be adjusted by spinning the
scroll wheel.

Once the user clicks a mouse button, the system grabs a screen-
shot of the square area and presents the captured snippet on the
touch display, scaled to fit into the grid of icons, see Figure 1. Now,
touching the icon initiates a mouse click of the previously entered
type (left/middle/right, double) at the original screen location, thus
providing a shortcut to the underlying command.

This approach does not require any additional information from
GUI widgets or the operating system. Thus, it works with any appli-
cation that reacts to mouse input. As a fast and transparent way of
mapping shortcuts to an input device placed conveniently at the fin-
gertips of the user, the system can reduce strain and supports a more
efficient interaction when carrying out tasks that require repetitive
clicking on the same UI widget. The current version of TapShot
employs a client-server architecture that enables its use on virtually
any networked touch-screen device.

∗e-mail: kgohlke@acm.org
†e-mail: joern.loviscach@fh-bielefeld.de

Figure 1: The TapShot icons collected by the user (left) can be used
to invoke commands on the main screen (right).

3 Outlook

Ongoing work aims at providing a more robust mapping between
the selected locations of action and the current state of the GUI of
an unmodified legacy application, similar to Besacier et al. [2009]
or Myers et al. [2001]. An initial step will be to store location
data relative to the coordinates of the window that was active at the
time of grabbing screenshots and reposition the mouse click event
from the touch screen in case the underlying window’s position has
changed since the assignment. As an alternative, image process-
ing could be applied to track UI widgets on a completely graphical
basis, following the approach of Yeh at al. [2009]. The TapShot sys-
tem could provide a way to quickly record and trigger sequences of
click events or keystrokes on the fly, similar to the macro function-
ality already present in many applications—with the added benefit
of a central and more transparent interface. To control actions that
are not directly accessible from a GUI, the TapShot system could
further be used to fire MIDI, OSC or TUIO data events.

References

BESACIER, G., AND VERNIER, F. 2009. Toward user interface vir-
tualization: legacy applications and innovative interaction sys-
tems. In Proc. of EICS ’09, 157–166.

MYERS, B. A., PECK, C. H., NICHOLS, J., KONG, D., AND
MILLER, R. 2001. Interacting at a distance using semantic
snarfing. In Proc. of UbiComp ’01, 305–314.

YEH, T., CHANG, T.-H., AND MILLER, R. C. 2009. Sikuli:
using GUI screenshots for search and automation. In Proc. of
UIST ’09, 183–192.


